
Geometry II Chapter 7 Lecture Notes Fall 2023

§7.1 Parallel Translation and Connections

Definition Let M be an oriented Riemannian manifold of dimension 2. Let T (M) denote the
tangent bundle of M. Let

S(M) = {(m, v) ∈ T (M) | ⟨v, v⟩ = 1}

S(M) is called the sphere bundle, or circle bundle, of M.

The notation (m, v) for a point of T (M) (or S(M)) is redundant since v ∈ T (M, m). Neverthe-
less, we use it to emphasize that v is a tangent vector at m.

Remarks

(1) S(M) is a smooth manifold ofdimension 3. The function f : T (M) → R1, given by f(m, v) =
⟨v, v⟩, is smooth, and df ̸= 0 whenever f = 1, so the implicit function theorem applies.

(2) Note that the circle S1 = {z ∈ C | |z| = 1} is a group under (complex) multiplication.
Since eiθ1 · eiθ2 = ei(θ1+θ2), the group S1 is just the group of rotations of the oriented plane
R2. This group acts on S(M) : there exists a smooth map

A : S1 × S(M) → S(M)

given by
A(g, (m, v)) = (m. gv) for g ∈ S1, (m, v) ∈ S(M),

where gv is the image of the vector v under rotation by g in the oriented plane T (M, m)
(Figure 7.1). So, if g = eiθ, {v1, v2} is any oriented orthonormal basis for T (M, m), and
if v = c1 v1 + c2 v2 for some c1, c2 ∈ R1, then, since gv1 = cos θ v1 + sin θ v2 and gv2 =
− sin θ v1 + cos θ v2, we have

gv = (c1 cos θ − c2 sin θ) v1 + (c1 sin θ + c2 cos θ) v2.

We shall often denote A(g, (m, v)) by g(m, v). Then g : S(M) → S(M) is a smooth map
for each g ∈ S1.

(3) If π : S(M) → M denotes projection, then π−1(m) is just the unit circle in T (M, m).
Moreover, if (m, v1) and (m, v2) are any two elements of π−1(m), then there exists a unique
g ∈ S1 such that (m, v2) = g(m, v1) (Take g = eiθ, where θ is the positive angle of rotation
from v1 to v2.)

(4) S(M) is locally a product space. For let U be a coordinate neighborhood in M, with
coordinate functions (x1, x2). Let e1 be the vector field (∂/∂x1)/∥∂/∂x1∥, where ∥∂/∂x1∥ =
⟨∂/∂x1, ∂/∂x1⟩1/2. Then e1 is a smooth vector field on U, which is everywhere of length 1.
Thus e1 defines a smooth map

c : U → π−1(U) by c(m) = (m, e1(m)).
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Clearly π ◦ c = iU . Now define B : U × S1 → π−1(U) by

B(m, g) = gc(m) = (m, ge1(m)) = A(g, (m, e1(m))).

Then it is easy to verify that B is smooth, injective, and surjective; and that dB is every-
where nonsingular so that B−1 is also smooth.

(5) It is not true that S(M) is globally a product of S1 withM. If there exists a smooth nonzero
vector field onM, then the above argument shows that S(M) is diffeomorphic withM×S1.
However, there do not exist such nonzero vector fields in general. (For example, M = S2.)

For M = R2, the notion of translating a: tangent vector parallel to itself is clear. We now
propose to generalize it and introduce the concept of parallel translation of tangent vectors on
arbitrary 2-dimensional oriented Riemannian manifolds. It will tum out that we will be able to
parallel translate vectors along curves from one point to another, but that the result will depend
on the curve. In particular, if we parallel translate around a closed curve, we may not get back
to our original vector. The new vector will differ from the original vector by a rotation; i.e.,
by an element of S1. For M = R2, a “flat” space, this rotation is zero. For arbitrary M, this
rotation (or, more precisely, the limit of it as the curve shrinks to a point m) will measure the
“curvature” of M at m.

We shall require that parallel translation be an isometry. Thus, parallel translation of a unit
vector along a curve α : [a, b] → M will determine a unit tangent vector α̃(t) ∈ T (M, α(t)) for
each t ∈ [a, b]. If v ∈ π−1(α(a)), then parallel translation of v will determine a curve α̃ : [a, b] →
S(M) such that π ◦ α̃ = α. Moreover,

if v1 ∈ π−1(α(a)) and v1 = gv for some g ∈ S1, then

the curve α̃1 : [a, b] → S(M) determined by parallel translating v1 will be given by

α̃1(t) = gα̃(t) for each t ∈ [a, b].

Conversely, if, corresponding to each curve α : [a, b] → M and each unit tangent vector v at
α(a), there existed a unique “lift” α̃ : [a, b] → S(M), with the above properties, then a notion
of parallel translation is defined (see Figure 7.2).

Recall that in the theory of covering spaces, each curve had a unique lift because the fibers
p−1(x) were discrete. However, here the fibers π−1(m) are not discrete; they are circles. Hence
lifts are not unique. In fact, we do not even know in which direction to start moving. (There is
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a whole line of vectors ṽ ∈ T (S(M), (m, v)) such that dπ(ṽ) = α̇(a); each of these is a candidate
for ˙̃α(a).) So given m ∈ M and v ∈ T (M, m), we need a way of determining, for each curve α
throughm, an initial direction for α̃; that is, we need a way of choosing, for each α̇(a) ∈ T (M, m),
a vector ˙̃α(a) ∈ T (S(M), (m, v)) such that dπ( ˙̃α(a)) = α̇(a). Choosing the vector ˙̃α(a) is more
primitive than finding the lift α̃, but it will turn out that when the choice is made at every point
of π−1([a, b]), the lift (hence the parallel translate) is determined.

A natural way of uniquely determining such a vector ˙̃α(a) would be to require that it lie in a given
two-dimensional subspace of T (S(M), (m, v)) that is mapped isomorphically onto T (M, m) by
dπ : T (S(M), (m, v)) → T (M, m). Such a subspace will be complementary to the vertical space

dπ−1(0) = {t ∈ T (S(M), (m, v)) | dπ(t) = 0}.

Definition A connection on S(M) is a choice of a two-dimensional subspace H (m, v) of
T (S(M), (m, v)) at each point (m, v) ∈ S(M) such that the following hold.

(1) T (S(M), (m, v)) = H (m, v)
⊕

dπ−1(0); that is, the subspace H (m, v) is complementary

to the vertical space at (m, v).

(2) dg (H (m, v)) = H (m, gv) for each g ∈ S1.

(3) The choice of H is smooth; that is, for each point (m, v) ∈ S(M), there exists an open set
U about (m, v) and smooth vector fields X and Y defined on U such that {X, Y } spans
H at each point of U.

Remark For a connection H on S(M) there is an associated 1-form called the connection 1-
form. To define it, we will construct a smooth vector field V on S(M) which spans dπ−1(0) at
every point in S(M). Let ∂/∂θ denote the usual unit tangent vector field on S1. Then ∂/∂θ is
invariant under the action of any g ∈ S1 on S1, since

dg

(
∂

∂θ

)∣∣∣∣
h

=
∂

∂θ

∣∣∣∣
gh

for every h ∈ S1.

For each (m, v) ∈ S(M), consider the smooth map G : S1 → S(M) defined by

G(g) = g(m, v) = (m, gv).

Define V : S(M) → T (S(M), (m, v)) by

V (m, v) = dG

(
∂

∂θ

∣∣∣∣
1

)
, where 1 is the unit in S1 (see Figure 7.3).

In terms of a local coordinate neighborhood U of m in M and of the corresponding direct sum
representation

T (S(M), (m, v)) = T (M, m)
⊕

T (S1, g) ((m, v) ∈ π−1(U)),

where g is such that v = ge1 the vector field V is given by

V (m, v) =

(
0,

∂

∂θ

∣∣∣∣
g

)
.
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In particular, note that V is smooth and never zero, that dπ(V ) = 0, and that dh(V ) = V for
every h ∈ S1.

Definition Let H be a connection on S(M). The 1-form of H , or the connection 1-form, is
the 1-form φ on S(M) defined as follows. Let

q : T (S(M), (m, v)) = H (m, v)
⊕

dπ−1(0) → dπ−1(0)

be the projection map. For t ∈ T (S(M), (m, v)), set φ(t) = λ, where λ is the real number such
that q(t) = λV (m, v).

Local description of φ. LetX and Y be smooth vector fields defined in an open set U of S(M) such
that {X(m, v), Y (m, v)} spans H (m, v) for each (m, v) ∈ U. Then {V (m, v), X(m, v), Y (m, v)}
is a basis for T (S(M), (m, v)) at each (m, v) ∈ U. Let {φ1(m, v), φ2(m, v), φ3(m, v)} be the
dual basis for T ∗(S(M), (m, v)). hen φ1, φ2, φ3 are smooth 1-forms on U, and φ = φ1. In par-
ticular,

(1) φ is smooth, since φ1 is smooth.

(2) φ(V ) ≡ 1.

(3) g∗φ = φ for each g ∈ S1. For if t ∈ T (S(M), (m, v)), then

t = λV + t1 (λ ∈ R; t1 ∈ H ),

and

(g∗φ) (t) = φ ◦ dg(t) = φ (λ dg(V ) + dg(t1)) = φ (λV ) since dg(H ) ⊂ H

= λ = φ(t)
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Lemma Suppose ψ is any smooth 1-form on S(M) such that ψ(V ) ≡ 1 and g∗ψ = ψ. Then
H = ψ−1(0) is a connection on S(M) with the property that its connection 1-form is ψ.

Proof For each (m, v) ∈ S(M), ψ(m, v) : T (S(M), (m, v)) → R is a linear functional. Since
dimT (S(M), (m, v)) = 3, ψ−1(0) has dimension 2. V /∈ ψ−1(0), so ψ−1(0) is a complement to
the vertical space. dg

(
ψ−1(0)

)
= ψ−1(0) because g∗ψ = ψ.

Remark Let U be a coordinate neighborhood in M. We now exhibit a connection on π−1(U) =
S(U) = U × S1. Recall that, given coordinates (x1, x2) in U, a smooth map c : U → π−1(U) is
defined by

c(m) = (m, (∂/∂x1) /∥∂/∂x1∥).
For m ∈M, let

H1(c(m)) = dc(T (U, m)).

Then H1(c(m)) is complementary to the vertical. For

dπ (H1(c(m))) = dπ ◦ dc(T (U, m)) = d(π ◦ c)(T (U, m)) = (T (U, m)).

so that H1(c(m)) is two-dimensional and dπ|H1(c(m)) is an isomorphism. Furthermore, V /∈ H
since dπ(V ) = 0.

Now set H1(gc(m)) = dg (H1(c(m))) .

In terms of the product representation π−1(U) = U×S1 given by c, H1(m, v) is just the tangent
space at (m, v) to the submanifold U × {v} (Figure 7.4). More precisely, letting B : U × S1 →
π−1(U) be the isomorphism defined by B(m, g) = gc(m) = (m, ge1(m)),

H1(m, v) = dB (T (U × {g}, (m, g))) ,

where g ∈ S1 is such that ge1(m) = v. The 1-form φ1 of this connection is

φ1 =
(
B−1

)∗ (
d̃θ
)
,

where p : U × S1 → S1 is projection, dθ is the 1-form on S1 dual to ∂/∂θ, and

d̃θ = p∗ (dθ) .
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Note that dφ1 = 0 for this special connection, for

dφ1 = d
[(
B−1

)∗ ◦ p∗ (dθ)] = d
[(
p ◦ B−1

)∗
(dθ)

]
=
(
p ◦ B−1

)∗
(d(dθ)) = 0.

Warning d(dθ) = 0, not because dθ is the differential of a 0-form (it is not), but because there
are no nonzero 2-forms on S1.

Our definition of a connection was motivated by a desire to construct a notion of parallel trans-
lation. We now prove that given a connection on S(M), parallel translation is indeed defined.

Theorem Let H be a connection on S(M) with 1-form φ. Let α : [a, b] →M be a broken C∞

curve in M. Let v ∈ T (M, α(a)) with ∥v∥ = 1. Then there exists a unique broken C∞ curve
α̃ : [a, b] → S(M), called the horizontal lift of α, through (α(a), v), such that

(1) π ◦ α̃ = α.

(2) ˙̃α(t) ∈ H (α̃(t)) ; that is, φ
(
˙̃α(t)
)
= 0 for all t ∈ [a, b].

(3) α̃(a) = (α(a), v).

The vector α̃(b) ∈ T (M, α(b)) is the parallel translate of v along α to α(b).

The proof of this theorem requires two preliminary lemmas.

Lemma 1 Let H1 and H2 be two connections on S(M) with connection 1-forms φ1 and φ2.
Then

(1) (φ2 − φ1) (V ) = 0.

(2) g∗ (φ2 − φ1) = φ2 − φ1 for all g ∈ S1.

(3) φ2 − φ1 = π∗(τ) for some smooth 1-form τ on M.

Proof (1) and (2) are clear. We shall show that (1) and (2) imply (3). If ψ is any smooth 1-form
on S(M) with ψ(V ) ≡ 0 and g∗(ψ) = ψ for all g ∈ S1, then ψ = π∗(τ) for some τ. To define τ
on v ∈ T (M, m), let (m, v1) ∈ π−1(m), and let w ∈ T (S(M), (m, v1)), be such that dπ(w) = v.
Set τ(v) = ψ(w). τ(v) is independent of the w chosen in dπ−1(v) since dπ(w1) = v implies that
dπ(w1 − w) = 0, so that w1 − w = λV for some λ. Thus

ψ(w1) = ψ(w + λV ) = ψ(w) + λψ(V ) = ψ(w).

Also, τ(v) is independent of the point (m, v1) chosen in π−1(m), because if

(m, v2) ∈ π−1(m),

then v2 = gv1 for some g ∈ S1. Moreover, if w ∈ T (S(M), (m, v1)), satisfies dπ(w) = v, then
dg(w) ∈ T (S(M), (m, v2)), satisfies dw(dg(w)) = v, and

ψ|(m, v2) (dg(w)) = ψ|g(m, v1) (dg(w)) = g∗ψ|(m, v1) (w) = ψ|(m, v1) (w) .

τ is smooth because in a coordinate neighborhood U, τ(v) = ψ ◦ dc(v), where

c : U → π−1(U)

is defined by c(m) = (m, e1(m)).

Lemma 2 Let α : [a, b] → M be a smooth curve in M. Let α̃ : [a, b] → S(M) and β̃ : [a, b] →
S(M) be smooth curves such that π ◦ α̃ = α and π ◦ β̃ = α (see Figure 7.5). Suppose α̃ is
horizontal relative to some connection H on S(M) with connection 1-form φ; that is, suppose
φ
(
˙̃α(t)
)
= 0. Then there exists a smooth function θ : [a, b] → R such that
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(1) β̃(t) = eiθ(t)α̃(t) for t ∈ [a, b] and

(2) φ
(
˙̃β(t)
)
= (dθ/dt) (t) for t ∈ [a, b].

Furthermore, if α̃(a) = β̃(a), then θ can be chosen such that θ(a) = 0.

Proof Let ĝ : [a, b] → S1 be defined by

β̃(t) = ĝ(t) α̃(t) for t ∈ [a, b].

It is easy to verify that ĝ is a smooth curve. Since R is a covering space of S1, and [a, b] is simply
connected, there exists a lift θ : [a, b] → R of ĝ (see Figure 7.6). Furthermore, if α̃(a) = β̃(a),
then ĝ(a) = 1, and there exists a unique such lift with θ(a) = 0.

Since p is smooth and has a smooth inverse locally, θ is smooth. Furthermore,

β̃(t) = ĝ(t) α̃(t) = p ◦ θ(t) α̃(t) = eiθ(t) α̃(t)

so (1) is satisfied.
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To verify (2), first note that the tangent vector to the curve

ĝ : [a, b] → S1 (ĝ(t) = eiθ(t))

is given by

˙̂g(t) = (p ◦̇ θ) (t) = d (p ◦ θ)
(
d

dt

)
= dp

(
dθ

(
d

dt

))
= dp

(
dθ

dt

d

dt

)
=
dθ

dt
dp

(
d

dt

)
=
dθ

dt

∂

∂θ

Restricting attention to a coordinate neighborhood U ⊂ M and the corresponding product
representation π−1(U) ∼= U × S1,

α̃(t) = h(t) c(α(t)) = (α(t), h(t)),

for some h(t) = eiψ(t) ∈ S1, and

β̃(t) = (α(t), ĝ(t)h(t)) = (α(t), ei(θ(t)+ψ(t))).

The tangent vector to α̃ at α̃ is then (α̇(t), (dψ/dt) (∂/∂θ)), whereas the tangent vector to β̃ at
β̃(t) is then (α̇(t), [(dθ/dt) + (dψ/dt)] (∂/∂θ)),; that is,

˙̃β(t) = d (ĝ(t))
(
˙̃α(t)
)
+

(
0,
dθ

dt

∂

∂θ

)
= d (ĝ(t))

(
˙̃α(t)
)
+
∂θ

dt
V,

where d (ĝ(t)) is the differential of the map ĝ : S(M) → S(M). Since ˙̃α(t) is horizontal, and
d (ĝ(t)) (H ) ⊂ H ,

φ
(
˙̃β(t)
)
=
dθ

dt
φ(V ) =

dθ

dt
.

Proof of the Theorem Note that it suffices to prove the theorem for a smooth curve α. For
then we can uniquely lift each smooth portion of any broken curve.

Local existence Let U be a coordinate neighborhood in M. We shall show the existence of
unique horizontal lifts in π−1(U) = S(U). Let c : U → S(U) be as usual: c(m) = (m, e1(m))
for m ∈ U. We shall first show that if H is the special connection H1 on π−1(U), constructed
via the product structure, then α has a unique horizontal lift α̃1 such that α̃1(a) = c(α(a)).
Indeed, let α̃1 : [a, b] → π−1(U) be defined by α̃1 = c ◦ α. Then π ◦ α̃1 = π ◦ c ◦ α = α and
˙̃α1(t) = dc (α̇(t)) ∈ H1 (c(t)) , so α̃1 is a horizontal lift. Moreover, α̃1 is the unique H1-horizontal
lift such that

α̃1(a) = c(α(a)).

For if α̃2 were another such lift, then, by Lemma 2,

α̃2(t) = eiθ(t)α̃1(t)

for some smooth function θ with θ(a) = 0; and φ1

(
˙̃α2(t)

)
= dθ/dt, where φ1 is the connection

1-form of H1. Now α̃2 is H1-horizontal if and only if φ1

(
˙̃α2(t)

)
≡ 0; that is, dθ/dt ≡ 0. Hence

θ(t) must be constant. Since θ(a) = 0, θ(t) ≡ 0; that is, α̃2(t) = α̃1(t) for all t; that is, α̃2 = α̃1.

Thus α admits a unique H1-horizontal lift α̃1 with α̃1(a) = c(α(a)). Now consider our original
connection with connection 1-form φ. Then, by Lemma 1,

φ2 − φ1 = π∗(τ)
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for some smooth 1-form τ on U. Let α̃ be any curve in π−1(U) such that π ◦ α̃ = α. Then, by
Lemma 2, α̃(t) = eiθ(t)α̃1(t) and φ1

(
˙̃α(t)
)
= dθ/dt. Thus α̃ is an H -horizontal lift of α if and

only if φ
(
˙̃α(t)
)
≡ 0; that is, if and only if

(φ1 − φ)
(
˙̃α(t)
)
≡ φ1

(
˙̃α(t)
)
=
dθ

dt
.

But on the other hand,

(φ1 − φ)
(
˙̃α(t)
)
= (π∗τ)

(
˙̃α(t)
)
= τ

(
dπ ˙̃α(t)

)
= τ (α̇(t)) .

Thus α is H -horizontal if and only if dθ/dt = τ (α̇(t)) ; that is, θ =

∫ t

0

τ (α̇(t)) dt+ θ0 for some

constant θ0. Hence each H -horizontal lift α̃ of α; is of the form

α̃(t) = ĝ(t) (c ◦ α(t)) ,

where
ĝ(t) = eiθ0 ei

∫ t
0 τ(α̇(t)) dt

For each unit vector v in T (U, α(a)), there is precisely one θ0 with 0 ≤ θ0 < 2π and (α(a), v) =
eiθ0 (α(a), e1). The above formula, with this value of θ0, then gives the unique H -horizontal lift
α̃ with α̃(a) = (α(a), v).

Global existence To establish global existence, let α : [a, b] →M and let

t0 = sup{t ∈ [a, b] | α|[a, b] has a (unique) lift α̃}.

We shall show that t0 = b. Suppose t0 ̸= b. Then consider the restriction of α to the interval
[t0 − ε, t0 + ε]. By local existence, this has a unique lift ˜̃α for some sufficiently small ε > 0, say
with ˜̃α(t0) = (α(t0), w) ∈ S(M). Then α̃(t0 − ε) = g ˜̃α(t0 − ε) for some g ∈ S1, and g ˜̃α is a
horizontal lift with g ˜̃α(t0 − ε) = α̃(t0 − ε). By uniqueness, g ˜̃α = α̃ on the interval [t0 − ε, t0).
Hence g ˜̃α extends α̃ beyond t0, contradicting the definition of t0.

Remark Note that, relative to the special connection H1 on π−1(U), parallel translation is
independent of the curve. In fact, the vector field e1 = (∂/∂x1) / ∥∂/∂x1∥ is parallel along every
curve in U.

§7.2 Structural Equations and Curvature

Definition Consider the circle bundle S(M) of a smooth oriented Riemannian 2-manifold M.
Two smooth 1-forms ω1 and ω2 are defined on S(M) as follows. For t ∈ T (S(M), (m, v)),

ω1(t) = ⟨dπ(t), v⟩,
ω2(t) = ⟨dπ(t), iv⟩,

where iv = eiπ/2v is the image of v under rotation through an angle of π/2 in T (M, m). (We
shall show below that these 1-forms are indeed smooth.)

Remark 1 Thus ω1(t) and ω2(t) are the components of dπ(t) relative to the orthonormal basis
{v, iv} for T (M, m); that is,

dπ(t) = ω1(t)v + ω2(t)(iv).

Remark 2 Suppose H is a connection on S(M) with connection 1-form φ. Then {φ, v, iv} is
a basis for T ∗(S(M), (m, v)) for each (m, v) ∈ S(M).
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Proof Note that if t ∈ T (S(M), (m, v)) such that ω1(t) = ω2(t) = 0, then dπ(t) = 0, so t is
vertical; that is, t = λV for some λ. Furthermore, if φ(t) = 0, then λ = φ(λV ) = φ(t) = 0, so
t = 0. Thus {φ, v, iv} are linearly independent and, since dimT ∗(S(M), (m, v)) = 3, form a
basis for T ∗(S(M), (m, v)) for each (m, v) ∈ S(M).

Remark 3 Let g = eiθ ∈ S1. Then

g∗ω1 = (cos θ)ω1 + (sin θ)ω2

g∗ω2 = − (sin θ)ω1 + (cos θ)ω2.

Proof gv = (cos θ) v + (sin θ) (iv) . Hence, for t ∈ T (S(M), (m, v)),

g∗ω1|(m, v) (t) = ω1|(m, gv) (dg(t))
= ⟨dπ ◦ dg(t), gv⟩
= ⟨dπ(t), gv⟩
= ⟨dπ(t), (cos θ) v + (sin θ) iv⟩
= (cos θ)ω1 + (sin θ)ω2.

Similarly,

g∗ω2|(m, v) (t) = ω2|(m, gv) (dg(t))
= ⟨dπ ◦ dg(t), igv⟩
= ⟨dπ(t), igv⟩
= ⟨dπ(t), (cos θ) iv − (sin θ) v⟩
= − (sin θ)ω1 + (cos θ)ω2.

Remark 4 g∗ (ω1 ∧ ω2) = ω1 ∧ ω2 for all g = eiθ ∈ S1. For,

g∗ (ω1 ∧ ω2) = g∗ω1 ∧ g∗ω2 =
(
cos2 θ + sin2 θ

)
ω1 ∧ ω2 = ω1 ∧ ω2.

Furthermore, ω1 ∧ ω2 (t1, t2) = 0 if either t1 or t2 is vertical. Hence, as in the proof that
φ − φ1 = π∗τ for some τ (Section 7.1), the 2-form ω1 ∧ ω2 is the image under π∗ of a (unique)
form on M.

Definition The volume element of a smooth oriented Riemannian 2-manifold M is the smooth
2-form, vol, on M such that

π∗(vol) = ω1 ∧ ω2;

that is, for v1, v2 ∈ T (M, m), vol (v1, v2) = ω1 ∧ ω2|(m, v) (v
′
1, v

′
2) for any

(m, v) ∈ π−1(m) ⊂ S(M) and v′1, v
′
2 ∈ T (S(M), (m, v))

such that dπ(v′i) = vi for i = 1, 2.

Remark 5 Suppose U is a coordinate neighborhood in M with coordinate functions (x1, x2).
Let e1 = (∂/∂x1)/∥∂/∂x1∥ and let ω′

1, ω
′
2 be the smooth 1-forms on U that at each m ∈ U form

the basis for T ∗(M, m) dual to {e1(m), ie1(m)}. Let

c : U → π−1(U) ⊂ S(M)

be given by c(m) = (m, e1(m)). Then, for v ∈ T (M, m),

(c∗ω1) (v) = ω1 (dc(v)) = ⟨dπ ◦ dc(v), e1⟩ = ⟨v, e1⟩ = ω′
1(v),

Page 10



Geometry II Chapter 7 Lecture Notes(Continued)

so ω′
1 = c∗ω1. Similarly, ω′

2 = c∗ω2. In particular,

ω′
1 ∧ ω′

2 = c∗ω1 ∧ c∗ω2 = c∗ (ω1 ∧ ω2) = c∗ ◦ π∗ (vol) = (c ◦ π)∗ (vol) ;

so, since π ◦ c = iU ,

vol|U = ω′
1 ∧ ω′

2

Now let ω̃i = π∗ω′
i (i = 1, 2). Then ω̃1 and ω̃2 are smooth 1-forms on π−1(U) ⊂ S(M) and

ω̃1 ∧ ω̃2 = π∗ω′
1 ∧ π∗ω′

2 = π∗ (ω′
1 ∧ ω′

2) = π∗ (vol) = ω1 ∧ ω2.

Moreover, at each point (m, e1(m)) of C(U), ωi = ω̃i. For; if

t ∈ T (S(M), (m, e1))

then

ω1(t) e1 + ω1(t) (ie1) = dπ(t)

= ω′
1 (dπ(t)) e1 + ω′

2 (dπ(t)) (ie1)

= ω̃1(t) e1 + ω̃2(t) (ie1)

Note further that, for g = eiθ ∈ S1,

g∗ω̃i = g∗ ◦ π∗ω′
i = (π ◦ g)∗ ω′

i = π∗ω′
i = ω̃i.

Thus, from Remark 3 above,

(g∗ω1)|(m, e1) = (cos θ)ω1 + (sin θ)ω2|(m, e1)
= (cos θ) ω̃1 + (sin θ) ω̃2|(m, e1)
= (cos θ) g∗ω̃1 + (sin θ) g∗ω̃2|(m, e1)

Applying
(
g−1
)∗
, the forms ω1 and ω̃i at (m, ge1) are related by

ω1 = (cos θ) ω̃1 + (sin θ) ω̃2.

Similarly,
ω2 = − (sin θ) ω̃1 + (cos θ) ω̃2.

In particular, the above formulae show that ω1 and ω2 are smooth.

Remark 6 For higher dimensional Riemannian manifolds, the volume element is obtained simi-
larly. If U is a coordinate neighborhood in the oriented Riemannian manifoldM, with coordinate
functions (x1, . . . , xn) such that dx1 ∧ · · · ∧ dxn gives the orientation of U, consider the vector
fields ∂/∂x1, . . . , ∂/∂xn.

Using the Gram-Schmidt orthogonalization process, we obtain smooth vector fields e1, . . . , en on
U which form an orthonormal basis for the tangent space at each point. Let ω′

1, . . . , ω
′
n be the

dual 1-forms. Then the n-form vol|U = ω′
1 ∧ · · · ∧ ω′

n is independent of the (oriented) coordinate
system on U and thus defines a global nonzero n-form vol.

Given an oriented Riemannian 2-manifold M and a connection on S(M) with connection 1-form
φ, the 1-forms φ, ω1, ω2 form a basis for the cotangent space at each point of S(M). Hence
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the 2-forms ω1 ∧ ω2, ω1 ∧ φ, ω2 ∧ φ, form a basis for the 2-forms at each point of S(M). Hence
dφ, dω1, dω2 can be expressed in terms of this basis. The resulting formulae are called the Cartan
structural equations. We now derive them, beginning with the second structural equation.

Second structural equation. On π−1(U), for a coordinate neighborhood U, let φ1 denote the
connection 1-form of the special connection H . Then dφ1 = 0 so that

dφ = dφ− dφ1 = d (φ− φ1) = d (π∗τ) = π∗ (dτ)

for some smooth 1-form τ on U. Now dτ is a 2-form on U, hence is a multiple of the volume
element; that is, dτ = −K vol for some smooth function K on U. Thus

dφ = π∗ (−K vol) = π∗ (−K) π∗ (vol)

or

dφ = − (K ◦ π)ω1 ∧ ω2.

The smooth function K is independent of the coordinates used, since it is determined by this
last formula. Thus K is a smooth function on M, called the curvature of the connection φ.

First structural equation. On π−1(U), for a coordinate neighborhood U, we have seen that at
eiθc(m),

ω1 = (cos θ) ω̃1 + (sin θ) ω̃2,

ω2 = − (sin θ) ω̃1 + (cos θ) ω̃2.

Now
dω̃i = d (π∗ω′

i) = π∗ (dω′
i) = π∗ (ai vol) = (ai ◦ π)ω1 ∧ ω2

for some smooth function ai on U. Thus setting ãi = ai ◦ π,

dω1 = − (sin θ) dθ ∧ ω̃1 + (cos θ) ã1ω1 ∧ ω2 + cos θ dθ ∧ ω̃2 + (sin θ) ã2ω1 ∧ ω2

= dθ ∧ ω2 + (ã1 cos θ + ã2 sin θ)ω1 ∧ ω2

If H is the special connection H1 on π−1(U), then φ1 = dθ, thus for this special connection,

(∗) dω1 = φ1 ∧ ω2 + b1 ω1 ∧ ω2

for some smooth function b1 on π−1(U). Similarly,

dω2 = −φ1 ∧ ω1 + b2 ω1 ∧ ω2

For an arbitrary connection form φ, φ1 − φ = π∗τ for some smooth 1-form τ = c1ω
′
1 + c2ω

′
2 on

U. Hence

φ1 − φ = π∗ (c1ω
′
1 + c2ω

′
2)

= (c1 ◦ π) ω̃1 + (c2 ◦ π) ω̃2

= f1 ω1 + f2 ω2

for some smooth functions f1, f2 on π−1(U), since ω̃1, ω̃2 span the same space at each point as
ω1, ω2. Thus

φ1 = φ + f1 ω1 + f2 ω2,
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and, by substituting into (∗),

dω1 = φ ∧ ω2 + f1 ω1 ∧ ω2 + b1 ω1 ∧ ω2

= φ ∧ ω2 + (f1 + b1)ω1 ∧ ω2.

This, together with the corresponding equation for dω2, gives the first structural equations as
follows:

dω1 = φ ∧ ω2 + h1 ω1 ∧ ω2,

dω2 = −φ ∧ ω1 + h2 ω1 ∧ ω2,

where h1, h2 are smooth functions on S(M). Note that although these equations were derived over
a coordinate neighborhood, they are independent of coordinates. Thus they are valid globally.

Although one might expect that by choosing an appropriate connection φ on S(M), the coeffi-
cients of dωi relative to the basis {φ∧ ω1, φ∧ ω2, ω1 ∧ ω2} could be prescribed fairly arbitrarily,
this is not the case. In fact, dω1 never has a component in the φ ∧ ω1 direction, and dω2 never
has a component in the φ∧ω2 direction. Moreover, the components of dω1 and dω2 in the φ∧ω2

and φ ∧ ω1 directions, respectively, must always be +1 and −1.

It is natural to ask whether the first structural equations can be made simpler by an appropriate
choice of connection on S(M). In particular, can φ be chosen such that h1 ≡ 0 and h2 ≡ 0? The
answer is yes, and the choice is unique.

Theorem Let M be an oriented Riemannian 2-manifold. Then there exists a unique connection
ψ on S(M) such that

dω1 = ψ ∧ ω2,

dω2 = −ψ ∧ ω1.

This connection is called the Riemannian connection.

Proof Let φ be any connection on S(M). If ψ is any other connection on S(M), then, as above,

φ− ψ = x1ω1 + x2ω2

for some x1 and x2. Solving for φ and substituting in the first structural equations for φ, we
obtain

dω1 = ψ ∧ ω2 + (h1 + x1)ω1 ∧ ω2,

dω2 = −ψ ∧ ω1 + (h2 + x2)ω1 ∧ ω2,

Thus

dω1 = ψ ∧ ω2

dω2 = −ψ ∧ ω1

if and only if x1 = −h1, x2 = −h2. This gives both existence and uniqueness.

The Cartan structural equations have a dual formulation in terms of vector fields. Let V, E1, E2

be the smooth vector fields on S(M) that form the dual basis to φ, ω1, ω2. Then E1 and E2 are
horizontal at each point since φ(E1) = φ(E2) = 0. Moreover,

dπ (E1(m, v)) = ω1(E1)v + ω2(E1)(iv) = v,

so E1(m, v) is the unique horizontal vector at (m, v) whose image under dπ is v. Similarly,
dπ (E2(m, v)) = iv. The structural equations then become
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[V, E1] = E2,

[V, E2] = −E1,

[E1, E2] = (K ◦ π)V − h1E1 − h2E2.

If φ = ψ, the 1-form of the Riemannian connection, the last boxed equation reduces to

[E1, E2] = (K ◦ π)V.

To verify these equations, apply the formula

dτ (V1, V2) =
1

2
{V1τ (V2) − V2τ (V1) − τ ([V1, V2])}

nine times, as τ runs through the set {φ, ω1, ω2}, and V1, V2 runs through the set {V, E1, E2}.
Remark If K is constant, these formulae show that {V, E1, E2} spans a finite-dimensional Lie
algebra.

From now on, for an oriented Riemannian 2-manifold M, let the connection chosen be the
Riemannian connection, and let K be the curvature function for that connection.

§7.3 Interpretation of Curvature

We now show that the curvature K of M measures the amount of rotation obtained in parallel
translating vectors around small closed curves in M. The intuitive reason is this. On S(M) we
have the vector fields E1, E2 and V, and we know that for the Riemannian connection,

[E1, E2] = (K ◦ π)V.

But [E1, E2] (m, v) is just the tangent vector to the curve through (m, v) obtained by following
the integral curves of E1 and E2 forward and then backward through parameter distances of

√
s.

(Figure 7.7; see Section 5.3).

Projecting this figure down toM, we obtain a rectangular-shaped figure which is “nearly” closed;
that is, the curve obtained through m has zero tangent vector at m because it is the projection
of [E1, E2] (m, v) , which is vertical (see Figure 7.8).
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Now the integral curves in S(M) are the horizontal lifts of the curves in M ; that is, these curves
are obtained by parallel translating v around the curves inM. The endpoints of the curve through
(m, v)-dotted in Figure 7.9-essentially differ by an element of S1, namely the rotation g = eiθ,
which sends v into its parallel translate around the rectangle in M.

Since the area of the rectangle in M is approximately
√
s ·

√
s = s, the

limit as s → 0 of the angle of rotation θ divided by the area of the rectangle is equal to the
coefficient of V, namely K(m).

Stated precisely and in somewhat greater generality, the result we have been discussing is as
follows.

Theorem 1 Let M be an oriented Riemannian 2-manifold. Let ⟨s⟩ be an oriented 2-simplex in
R2, and let h : [s] →M be a map which has a smooth extension mapping a neighborhood of [s]
into M. Let α be the closed broken C∞ curve in M obtained by restricting h to ∂⟨s⟩. Then the
rotation obtained by parallel translation around the closed curve α is

ei
∫
⟨s⟩ h

∗(K vol)

so that the angle of rotation is

∫
⟨s⟩
h∗ (K vol) .

Remark Note that this result contains the result discussed above. To obtain K(m), take the

limit of

∫
⟨s⟩
h∗ (K vol) /

∫
⟨s⟩
h∗ (vol) as ⟨s⟩ shrinks to zero and h (⟨s⟩) shrinks to m. However,

the theorem says more. For example, it is possible to have K > 0 on h ([s]) and still get a
trivial rotation upon parallel translating around α, namely when the total angle of rotation∫
⟨s⟩
h∗ (K vol) is an integer multiple of 2π.

Proof of Theorem 1 Let ⟨s⟩ = ⟨v0, v1, v2⟩ for some vertices v0, v1, v2 and let w0 ∈ T (M, h(v0))
be a unit vector. The lines in [s] through v1 cover [s]; their images under h are curves in M
which cover h([s]). Let h̃ : [s] → S(M) be obtained by mapping each of these curves into its
horizontal lift in S(M) through

(h(v1), w1) ∈ S(M),
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where w1 is the parallel translate of w0 along the curve α|⟨v0, v1⟩ to h(v1) (Figure 7.10).

By construction, π ◦ h̃ = h. Moreover, h̃ has a smooth extension mapping a neighborhood of [s]
into S(M). This may be checked via local coordinates; we omit the computation.

Now∫
⟨s⟩
h∗ (K vol) =

∫
⟨s⟩

(
π ◦ h̃

)∗
(K vol) =

∫
⟨s⟩
h̃∗ [π∗ (K vol)] =

∫
⟨s⟩
h̃∗ [(K ◦ π)ω1 ∧ ω2]

= −
∫
⟨s⟩
h̃∗ (dφ) (second structural equation)

= −
∫
⟨s⟩
d
(
h̃∗φ

)
= −

∫
∂⟨s⟩

(
h̃∗φ

)
(Stokes’s Theorem)

= −
∫
∂⟨s⟩

φ

(
dh̃

(
d

dt

))
dt

= −
∫
∂⟨s⟩

φ

(
dβ̃

(
d

dt

))
dt

where β̃ = h̃|∂⟨s⟩. Let α̃ denote the horizontal lift of α through h̃(v0) = (α(v0), w0) . Since

β̃|⟨v0, v1⟩ = h̃|⟨v0, v1⟩ and β̃|⟨v1, v2⟩ = h̃|⟨v1, v2⟩ are horizontal by construction of h̃,
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we have β̃|⟨v0, v1⟩ = α̃|⟨v0, v1⟩ and β̃|⟨v1, v2⟩ = α̃|⟨v1, v2⟩. By Lemma 2, Section 7.1, there exists a
function f : ⟨v2, v0⟩ → R with f(v2) = 0 such that

β̃(t) = eif(t) α̃(t).

But α̃ is the horizontal lift of α, so that α̃(v0) is the parallel translate of w0 around α. On the
other hand, β̃(v0) = w0. Hence e

if(v0) is just the rotation mapping the parallel translate of w0

around α into w0; that is, e
−if(v0) rotates w0 into its parallel translate around α. By the second

statement of Lemma 2, Section 7.1,

φ

(
dβ̃

(
d

dt

))
=
df

dt

for t ∈ ⟨v2, v0⟩. Moreover, φ
(
dβ̃ (d/dt)

)
= 0 on ⟨v0, v1⟩ and ⟨v1, v2⟩ since β is horizontal there.

Thus since ∂⟨s⟩ = ⟨v0, v1⟩ + ⟨v1, v2⟩ + ⟨v2, v0⟩,∫
⟨s⟩
h∗ (K vol) = −

∫
⟨v2, v0⟩

φ

(
dβ̃

(
d

dt

))
dt

= −
∫
⟨v2, v0⟩

df

dt
dt

= −f(v0)
= the angle of rotation from w0 to its parallel translate around α.

Definitions Let α : [a, b] →M be a smooth curve. The length ℓ(α) of α is the real number

ℓ(α) =

∫ b

a

∥α̇(t)∥ dt.
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The arc length along α is the function s : [a, b] → R given by

s(t) =

∫ t

a

∥α̇(τ)∥ dτ.

Remark l and s are defined because t → ∥α̇(t)∥ is continuous. Note that the function s is of
class C1, but it is not necessarily smooth because t → ∥α̇(t)∥ is not necessarily differentiable
where α̇(t) = 0. If, however, ∥α̇(t)∥ ≠ 0 for all t, then s is smooth and monotonically increasing.

Definition A curve α : [a, b] →M is said to be parameterized by arc length if ∥α̇(t)∥ = 1 for all
t ∈ [a, b]. In this case, s(t) = t− a for all t ∈ [a, b].

Remark Given any curve α : [a, b] →M with ∥α̇(t)∥ ≠ 0 for all t, a new curve α1 : [a, b] →M,
parameterized by arc length, is obtained by setting

α1 = α ◦ s−1.

Then Imα1 = Imα, and ℓ(α1) = ℓ(α).

Remark The concept of arc length extends to broken C∞ curves a since ∥α̇(t)∥ is defined at all
but a finite number of points.

Definition Given a smooth curve α : [a, b] → M parameterized by arc length, a smooth curve
α′ : [a, b] → S(M) is defined by

α′(t) = (α(t), α̇(t)) for t ∈ [a, b].

α is said to be a geodesic in M if α′ is horizontal; that is, if α′ is the horizontal lift of α through
(α(a), α̇(a)) ∈ S(M). Note that if α is a geodesic, the parallel translate of α̇(0) along α to α(t) is
just α̇(t); that is, the tangent to α translates into itself, and α is a “straight line” of the surface.

To measure how far a curve α is from being “straight,” we measure how far α′ is from being
horizontal. Suppose, then, α is parameterized by arc length so that α′ : [a, b] → S(M) is a curve
in S(M).

DefinitionThe geodesic curvature κα(t) of α at t ∈ [a, b] is ψ (dα̃ (d/dt)) where ψ is the 1-form
of the Riemannian connection.

Notation If α : [a, b] →M is a broken C∞ curve with α̇(t) ̸= 0 for all t ∈ [a, b], let

τ(α) =

∫ ℓ(α)

0

κα1(t) dt,

where α1 is the new curve obtained from α by parameterizing by arc length.

If M is a smoothly triangulated manifold, then τ can be considered as a 1-cochain (relative to
the triangulation).

Lemma (Gauss-Bonnet Theorem for 2-simplices) Let M be an oriented Riemannian 2-
manifold. Let ⟨s⟩ be an oriented 2-simplex in R2, and let h : [s] → M be a map which has a
smooth nonsingular extension mapping a neighborhood of [s] intoM. Let α be the closed broken
C∞ curve in M obtained by restricting h to ∂⟨s⟩. Then∫

⟨s⟩
h∗ (K vol) = −τ (α) +

∑
(interior angles of h([s]))− π.

Proof From Theorem 1 above, ei
∫
⟨s⟩ h

∗(K vol) is the rotation obtained by parallel translation
around the closed curve α. Suppose α is broken up into its three smooth curves α0, α1 and α2
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so that τ (α) =
∑

τ (αi) and αi : [ai, ai+1] → M with a0 = a and a3 = b. By Lemma 2,

Section 7.1, eiτ(αi) is the rotation from the parallel translate of α̇i(ai) to α̇i(ai+1). Hence, from
the picture in M (Figure 7.12), we get that parallel translation around the closed curve α is
given by ei(−τ(α)−

∑
exterior angles) Hence, by taking logarithms, we get∫

⟨s⟩
h∗ (K vol) = −τ (α)−

∑
(exterior angles) + 2πℓ, where ℓ is an integer.

We use a continuity argument to show ℓ = 1. Suppose ρ0 is a flat Riemannian metric in a neigh-

borhood of h[s] (say transferred from R2 via h). Then K = 0, τ(α) = 0, and
∑

(exterior angles)

is 2π. Hence for the flat Riemannian metric, ℓ = 1. Suppose ρ is our given Riemannian metric,
and let ρt = tρ0 + (1 − t)ρ be a family of metrics, t ∈ [0, 1]. Let Kt, τt(α), exterior anglest be
the usual entities for ρt. These are continuous functions of t. Hence ℓ is a continuous function of
t. Since it is an integer for all t and equal to 1 for t = 0, we obtain ℓ = 1. (You can also obtain
this result by checking that ℓ = 1 for small triangles and taking barycentric subdivisions.)

Since interior angle + exterior angle = π, the lemma is proved.

Definition Let M be an oriented, connected, smoothly triangulated 2-manifold. For each 2-
simplex s in M, let ⟨s⟩ denote this simplex oriented consistently with M. That is, if h : K →M
is the triangulation and ω is a 2-form on M giving its orientation, let the orientation of s be
given by the 2-form h∗sω. Let

c =
∑
s

⟨s⟩.

Then c is a cycle called the fundamental cycle of M. Given any 2-form µ on M, the integral of µ
over M is defined by ∫

M

µ =

∫
c

h∗sµ.

Exercise Prove that c is a cycle.

Remark The integral can be defined without use of a triangulation. Let M be a compact
oriented n-manifold, and let µ be an n-form on M. Let {Uj, fj} be a smooth partition of unity
on M, where {Uj} is a finite covering of M by coordinate neighborhoods. Then integration of
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n-forms is defined on each Uj by pulling the forms back to Rn through the coordinate systems.
The integral of µ over M is then given by∫

M

µ =
∑
j

∫
Uj

fjµ.

This is independent of the partition of unity used,for if {Vk, gk} is another such partition, then∑
j

∫
Uj

fjµ =
∑
j, k

∫
Uj∩Vk

fjgkµ =
∑
k

∫
Vk

gkµ.

Theorem 2 (Gauss-Bonnet Theorem) Let M be an oriented, connected, smoothly triangu-
lated, Riemannian 2-manifold. Then

1

2π

∫
M

K vol = χ(M) = β0 − β1 + β2,

where χ(M) is the Euler characteristic of M.

Proof Note that each 1-simplex t of M is an edge of precisely two 2-simplices of M. For given
any point m ∈ (t), there exists, by the implicit function theorem, a coordinate ball U about
m such that (t) ∩ U is mapped into a straight line in R2. By choosing U small enough, t must
divide U into precisely two pieces. These pieces must lie in distinct 2-simplices, and, since open
simplices are disjoint, there can be no other 2-simplex with t as an edge.

Thus, since each 2-simplex has three 1-simplices as edges, the total number n1 of 1-simplices of
M is given by n1 = 3n2/2 where n2 is the number of 2-simplices of M. Letting n0 denote the
number of vertices in M, the Euler characteristic (Section 6.1) is given by

χ = n0 − n1 + n2 = n0 − (3n2/2) + n2 = n0 − (n2/2) .

Now we apply the previous lemma, and

1

2π

∫
M

K vol =
1

2π

∫
c

h∗ (K vol)

=
1

2π

∑
s

∫
⟨s⟩
h∗ (K vol)

=
1

2π

∑
s

(
−τ (∂⟨s⟩) +

∑
(interior angles of h[s])− π

)
=

1

2π

(
−τ (∂c) +

∑
s

(∑
interior angles of h[s]

)
− n2π

)
.

But ∂c = 0, and
∑
s

(∑
interior angles of h[s]

)
equals the sum over all vertices v in M of

the sum of the interior angles at v of all 2-simplices with v as a vertex. Taking a coordinate
neighborhood of V contained in St (v), we see that for each v, the sum of these interior angles
at v is exactly 2π (Figure 7.13). Hence

1

2π

∫
M

K vol =
1

2π
(2πn0 − n2π) = n0 − n2

2
= χ(M).
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Remark Note that this theorem holds for any connection on S(M), since only the second
structural equation was used in the proof.

Corollary 1 Let M be any Riemannian 2-manifold homeomorphic with the sphere S2. Then∫
M

K vol = 4π.

Corollary 2 Let M be any Riemannian manifold homeomorphic with the torus S1 × S1. Then∫
M

K vol = 0.

Corollary 3 Let M be as in the theorem. Suppose there exists on M a smooth vector field
which is never zero. Then χ(M) = 0. In particular, there exists no nonzero vector field on S2.

Proof Let X be such a vector field and let Y = X/∥X∥. Then Y is smooth, and ∥Y (m)∥ = 1
for all m ∈M, so Y is a smooth map M → S(M). On S(M),

dψ = − (K ◦ π)ω1 ∧ ω2 = −π∗ (K vol) .

Hence

d (Y ∗ψ) = Y ∗ (dψ) = −Y ∗ ◦ ψ∗ (K vol)

= − (π ◦ Y )∗ (K vol)

= −K vol,

since π ◦ Y = iM . Thus K vol is exact and

2πχ =

∫
c

K vol = −
∫
c

d (Y ∗ψ) = −
∫
∂c

Y ∗ψ = 0.
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